Dilations and extremal measures

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomials biorthogonal to dilations of measures, and their asymptotics

We analyze polynomials Pn that are biorthogonal to dilates of a positive measure μ, supported on (0,∞): ∫ ∞ 0 Pn (x) dμ (σn,jx) = 0, 1 ≤ j ≤ n. We establish representations for Pn in terms of the associated dilation polynomial Rn (y) = n ∏

متن کامل

Extremal Length of Vector Measures

We define the extremal length of vector measures. We show the reciprocal relation between extremal distance and extremal width of vector measures.

متن کامل

Stability of N-extremal Measures

A positive Borel measure μ on R, which possesses all power moments, is N-extremal if the space of all polynomials is dense in L2(μ). If, in addition, μ generates an indeterminate Hamburger moment problem, then it is discrete. It is known that the class of N-extremal measures that generate an indeterminate moment problem is preserved when a finite number of mass points are moved (not “removed”!)...

متن کامل

On Extremal Measures for Conservative Particle Systems

– It is well known that the exclusion, zero-range and misanthrope particle systems possess families of invariant measures due to the mass conservation property. Although these families have been classified a great deal, a full characterization of their extreme points is not available. In this article, we consider an approach to the study of this classification. One of the results in this note i...

متن کامل

Certainty Equivalents and Information Measures: Duality and Extremal Principles

Given a convex function φ : IR+ → IR, the Csiszár φdivergence (Csiszár (1978)) is a function Iφ : IR+×IR n + → IR, Iφ(p,q) := n ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1975

ISSN: 0001-8708

DOI: 10.1016/0001-8708(75)90081-x